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Chirally-Ordered Fullerene Assemblies Found in Organic Gel Systems
of Cholesterol-Appended [60]Fullerenes
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Cholesterol-appended [60]fullerene gelators 2a and 2b were
prepared and their gelation properties were investigated. 2a with a
natural C-3 configuration can gelate dichloromethane whereas 2b
with an inverted C-3 configuration could not gelate any solvents.
UV/Vis and CD spectroscopic studies indicated that the [60]-
fullerene moiety in 2ais enforced to chirally orient in the gel state.

It is well known that [60]fullerene and its homologues tend
to randomly form three-dimensional aggregates. In spite of this
disadvantage, ordered fullerene assemblies have been successful-
ly formed in some specific fields, e.g., i) monolayers of fullerene
and its derivatives with hydrophilic groups at the air-water inter-
face,13 ii) rods and vesicles of fullerenes with hydrophilic
groups,* iii) encapsulated fullerenes in spherical aggregates of
block copolymers,® and iv) self-assembled monolayers of thiol-
containing fullerenes on gold.! To the best of our knowledge,
however, chirally-ordered fullerene assemblies have never been
reported. Recently, new supramolecular assemblies formed in
organic gel systems have been of much concern.®’ In particular,
cholesterol-based gelators, which can gelate various organic sol-
vents leading to the formation of stable gels, result in chirally-
ordered aggregates based on the helical packing of cholesterol
moieties.#10 In order to create chirally-ordered [60]fullerene
assemblies, we have designed two kinds of cholesterol-appended
[60]fullerene gelators, 2a with a natural C-3 (S-configuration
and 2b with an inverted C-3 (R)-configuration.
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In order to access 2a and 2b, cholesteryl 3,4-bis(bro-
momethyl)benzoates 1a and 1b were prepared by condensation
reactions of 3,4-bis(bromomethyl)benzoic acid with cholesterol
and with epicholesterol,!! respectively, in the presence of DCC
and DMAP in dichloromethane. The obtained 1aand 1b reacted
with [60]fullerene in the presence of Kl and 18-crown-6 in
refluxing toluene to give the desired 2al? and 2b, respectively.

The gelation test of 2 was carried out for 28 solvents using a
test-tube-tilting method.® The mixture of 2 and the solvent
(0.0243 mol dm=3) was heated until the solid was dissolved.
After the solution was cooled to room temperature, the solution
state was checked visually. As a whole, 2a and 2b did not act as
excellent gelators and tended to show the similar trends: insoluble
in aliphatic hydrocarbons (n-hexane, c-hexane, methyl-c-hexane,

etc.), in alcohols (methanol, ethanol, benzyl alcohol, etc.), and in
polar solvents (acetone, acetonitrile, THF, DMF, DMSO, etc.);
soluble in aromatic hydrocarbons (benzene, toluene, xylene,
etc.); recrystallized from haloalkanes (chloroform, carbon tetra-
chloride, 1,1,2-trichloroethane, etc.). We found, however, that 2a
gelated dichloromethane at 25 °C whereas 2b in dichloromethane
afforded only a solution. The gelation of dichloromethane by 2a
occurred above the concentration of 0.0162 mol dm=3 leading to
the transparent brown gel. On the other hand, below the con-
centration of 0.0121 mol dm=3 2a was freely soluble in
dichloromethane. Between the concentrations of 0.0121 and
0.0162 mol dm=2 the viscous fluid of 2a was formed.
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Figure 1. SEM picture of a xerogel obtained from 2a in
dichloromethane (0.0162 mol dm®) at -110 °C/0.1 torr.

The aggregate structure of 2a can be observed by scanning
electron microscopy (SEM, Hitachi S-4500). The SEM picture
of the xerogel, which was obtained from 2a in dichloromethane
at =110 °C/0.1 Torr,® showed the fibrous structure with ca. 100
nm diameter (Figure 1).14

The aggregation of the [60]fullerene moiety of 2a in the gel
state was corroborated by means of UV/Vis and CD spectroscopy
(Figure 2).15 In the UV/Vis spectra, the sol samples of 2a
(0.0121 mol dm=23) and 2b (0.0162 mol dm=2) in dichloromethane
indicated a typical absorption pattern of [6,6]closed-[60]-
fullerene monoadducts including a characteristic absorption
maximum at 434 nm.1® In the gel state (0.0162 mol dm™3), in
contrast, the UV/Vis spectrum of 2a was considerably broad-
ened, indicating the aggregation of the [60]fullerene moiety in
2a (Figure 2-a).217

In the sol state, 2a (0.0121 mol dm=3) and 2b (0.0162 mol
dm=3) in dichloromethane were CD (circular-dichroism)-silent
(Figure 2-b). The results indicate that the chiral cholesterol moi-
eties in 2a and 2b are too far from the achiral [60]fullerene chro-
mophore to generate the induced CD.X® In the gel state of 2a
(0.0162 mol dm=3), one can find the two maxima around 370 and
440 nm in the CD spectrum (Figure 2-b). The comparison with
the LD (linear dichroism) spectrum (Figure 2-c) suggests that the
370 nm band is mainly due to the component arising from LD.
On the other hand, the 440 nm band with a plus CD sign was
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reproducibly observable.® It should be emphasized that the
Cotton effect observed around 440 nm, which coincided with a
characteristic absorption maximum at 434 nm in the UV/Vis
spectrum,8 is due to the chiroptical contribution from the chiral-
ly-ordered [60]fullerene aggregate formed in the gel state.
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Figure 2. (a) Absorption spectra, (b) CD spectra and (c) LD spectra of
2a and 2b in dichloromethane in 0.01 cm width cell at 25 °C: the gel state
of 2a was observed at 0.0162 mol dm?, the sol state of 2a was observed
at0.0121 mol dm®, and 2b was observed at 0.0162 mol dm®,

As a summary of the foregoing results, it is concluded that
2a can gelate dichloromethane leading to the formation of chiral-
ly-ordered [60]fullerene aggregates. In the gel state of 2a, the
cholesterol—holesterol interaction and the fullerene—fullerene
cohesive force cooperatively act to construct the chiral assembly:
that is, the columnar one-dimensional packing of the cholesterol
moieties constitutes the helical structure where the [60]fullerene
moieties are chirally oriented outside the helical column.® The
formed [60]fullerene aggregate with chiral mode results in the
Cotton effect around 440 nm in the CD spectrum. Such a novel
aggregate structure is possible only in 2a, which has the extended
structure arising from the (S-configuration, whereas impossible
in 2b, which has the bent structure arising from the (R)-configu-
ration, as reported in our previous studies of (§- and (R)-cho-
lesterol derivatives.®

An additional interesting result was obtained in the gela-
tion test of 2a in dichloromethane (0.0243 mol dm=3) in the
presence of ZnTPP (zinc tetraphenylporphyrin). By addition of
> 0.5 equivalents of ZnTPP, the present 2a gel was changed
into a transparent solution, indicating that the gel structure of 2a
is not so stable and is easily collapsed by the fullerene-metallo-
porphyrin interaction!® between 2a and ZnTPP.

In conclusion, we have demonstrated that cholesterol-
appended [60]fullerene acts as a gelator and is useful to create a
chirally-ordered fullerene assembly. Further investigation of
the gelation properties of the cholesterol-appended [60]-
fullerenes is going on.
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